Эффект Поккельса

_____, ___ группа

"___" _____ 20__ г.

1 Аннотация

В работе исследуется двулучепреломление и эффект Поккельса в кристалле ниобата лития. Результатом работы является разность обыкновенного и необыкновенного показателей преломления кристалла, а также полуволновое напряжение $U_{\lambda/2}$.

2 Теоретические сведения

2.1 Двулучепреломление в одноосном кристалле

В одноосном двулучепреломляющем кристалле есть выделенная ось(назовем ее осью Z). Для световых волн, вектор \vec{E} которых направлен вдоль оси Z, показатель преломления равен n_e , а для световых волн, вектор \vec{E} перпендикулярен оси Z, показатель преломления равен n_o . Для используемого в работе кристалла $LiNbO_3$ $n_e < n_o$. В общем случае, когда волна распространяется под углом θ к оси Z, существуют два собственных значения показателя преломления: n1 для \vec{E} , перпендикулярного плоскости (\vec{k}, \vec{Z}), и n_2 для \vec{E} , лежащего в плоскости (\vec{k}, \vec{Z}). Первая волна называется обыкновенной, и для нее $n_1 = n_o$. Вторая волна называется необыкновенной, и показатель преломления для нее описывается уравнением

$$\frac{1}{n_2^2} = \frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_e^2}$$

Для наблюдения двулучепреломления в работе используется установка, изображенная на рисунке 1.

Рис. 1: Установка для наблюдения двулучепреломления

Поляризованное излучение лазера попадает на матовую пластинку, в результате рассеяния на которой получается конический пучок света. После прохождения двулучепреломляющего кристалла, ось которого параллельна оси установки, луч проходит через поляризатор, скрещенный с поляризацией лазера, и попадает на экран. Разность фаз между обыкновенной и необыкновенной волнами, проходящими через кристалл под углом θ , равна

$$\Delta \varphi = \frac{2\pi l}{\lambda} (n_1 - n_2)$$

В приближении малых углов l = const - длина кристалла, $n_2 = n_o - (n_o - n_e)\theta^2$. Тогда

$$\Delta \varphi = \frac{2\pi l}{\lambda} (n_o - n_e) \theta^2$$

Интерференционная картина будет представлять собой концентрические кольца, перерезанные темным крестом, так как в напрявлениях креста распространяется либо только обыкновенная, либо только необыкновенная волны. Радиус темных колец определяется выражением

$$2\pi n = \Delta \varphi = \frac{2\pi l}{\lambda} (n_o - n_e) \theta^2$$

С учетом преломления на границе кристалла, $\theta_{\text{вн}} = n_o \theta$, и

$$r_n^2 = \theta_{\rm\scriptscriptstyle BH}^2 L^2 = n \frac{\lambda n_o^2 L^2}{l(n_o - n_e)}$$

2.2 Эффект Поккельса

Эффект Поккельса заключается в изменении показателья преломления кристалла под действием внешнего электрического поля. Под действием поля \vec{E} , направленного вдоль оси X, в кристалле появляются две новые главные оптические оси, напрявленные под углом 45° к оси X(рис. 2).

Рис. 2: Главные оптические оси при наличии внешнего поля

Вдоль одной из этих осей показатель преломления равен $n - \Delta n$, вдоль другой - $n + \Delta n$. Для малых полей верно приближение $\Delta n = AE$.

В используемой установке свет на входе поляризован вертикально, а на выходе стоит поляризационная пластинка, пропускающая только горизонтальную составляющую. Разложим входящую волну E_0 по главным оптическим осям кристалла: $E_{\varepsilon} = E_{\eta} = \frac{E_0}{\sqrt{2}}$. После прохождения кристалла появится разность фаз

$$\delta = \frac{4\pi l}{\lambda} AE = \frac{4\pi l}{\lambda d} AU$$

Здесь U - напряжение на кристалле, d - поперечный размер кристалла.

Результирующее поле на выходе из кристалла после прохождения анализатора равно

$$E_{\text{вых}} = \frac{E_0}{2} e^{i(\omega t - kl)} \sin(\frac{\delta}{2})$$

Его интенсивность равна

$$I_{\rm BMX} = I_0 \sin^2\left(\frac{\delta}{2}\right) = I_0 \sin^2\left(\frac{\pi U}{2U_{\lambda/2}}\right)$$

Напряжение

$$U_{\lambda/2} = \frac{\lambda d}{4At}$$

называется полуволновым напряжением. При $U = U_{\lambda_2}$ разность хода между двумя волнами равна половине длины волны.

3 Экспериментальная установка

Рис. 3: Экспериментальная установка

На рисунке 3 изображена используемая в работе установка. Кристалл $LiNbO_3$ имеет размеры $3 \times 3 \times 26$ мм. Для длины волны гелий-неонового лазера $\lambda = 0, 63$ мкм $n_o = 2, 29$. В первой части работы вместо фотодиода используется экран, на котором наблюдается интерференционная картина. Во второй части работы исследуется зависимость интенсивности от напряжения U.

Расстояние от кристалла до экрана равно

$$L = 90.5 \pm 1.0$$
 см

Длинна волны использумоего гелий-неонового лазера

$$\lambda = 0.63$$
 мкм

Обыкновенный показатель преломления кристалла ниобата лития

$$n_o = 2.29$$

4 Результаты измерений

Соберем установку, как показано на рисунке 1. Убедимся, что центр интерференционной картины совпадает с точкой, в которую указывает лазер. При анализаторе, повернутом перпендикулярно поляризации лазера на экране появляется интерференционная картина в виде концентрических колец, перечеркнутых темным крестом. При повороте анализатора на 90° картина инвертируется.

Измерим радиусы темных колец в зависимости от их номера. Результаты измерений приведены в таблице 1.

n	r_n , см	$r_n^2, {\rm Cm}^2$
1	3.3	10.9
2	4.7	22.1
3	5.7	32.5
4	6.6	43.6
5	7.4	54.8
6	8.1	65.6
7	8.7	75.7
8	9.4	88.4
9	9.9	98.0

Таблица 1: Радиусы темных колец

Уберем матовую пластинку и включим блок питания, подающий напряжение на кристалл, в режиме постоянного напряжения. Для скрещенных поляризаций при нулевом напряжении яркость пятна минимальна. С увеличением напряжения пятно становится ярче и достигает максимальной яркости при $U = U_{\lambda/2}$. При дальнейшем повышении напряжения яркость уменьшается и достигает минимума при $U = U_{\lambda} = 2U_{\lambda/2}$. При повороте поляризатора на 90°(параллельные поляризации лазера и поляризатора) эффект меняется на противоположный: при нулевом напряжении яркость максимальна, понижается до нуля при $U = U_{\lambda/2}$ и обратно повышается до максимума при $U = U_{\lambda} = 2U_{\lambda/2}$.

При $U = U_{\lambda/4}$ яркость пятна не зависит от угла поворота анализатора. Следовательно, наблюдается круговая поляризация.

Измерим $U_{\lambda/2}$ и U_{λ} для скрещенных и параллельных поляризаций. Результаты измерений приведены в таблице 2.

	$U_{\lambda/2}, B$	U_{λ}, B
Скрещенные поляризации	450 ± 15	900 ± 15
Параллельные поляризации	450 ± 15	900 ± 15
По фигурам Лиссажу	420 ± 15	855 ± 15

Таблица 2: Значения $U_{\lambda/2}$ и U_{λ} , измеренные разными способами

Установим вместо экрана фотодиод. Переключим блок питания на режим переменного напряжения. Подключим сигнал с блока питания на вход X осциллографа, а сигнал с фотодиода - на вход Y. На осциллографе в режиме XY-развертки наблюдаются фигуры Лиссажу. По ним определим $U_{\lambda/2}$ и U_{λ} . Результаты приведены в таблице 2. Полученные фигуры Лиссажу изображены на рисунках 4, 5 и 6. При смене поляризации со скрещенной на параллельную фигура Лиссажу "переворачивается".

Рис. 4: Фигура Лиссажу для $U_0=U_{\lambda/2}$

Рис. 5: Фигура Лиссажу для $U_0=U_\lambda$

Рис. 6: Фигура Лиссажу для $U_0=3U_{\lambda/2}$

5 Обработка результатов

Для интерфереционной картины с помощью МНК найдем коэффициент пропорциональности между r_n^2 и n.

$$\frac{r_n^2}{n} = 10.92$$

Стандартное отклонение равно 0.07 см². Коэффициент Стьюдента для $n=9,\,p=0.95$ равен 2.31. Отсюда окончательно получим

$$rac{r_n^2}{n} = 10.9 \pm 0.2 \ \mathrm{cm}^2$$

 $n_o - n_e = rac{\lambda n_o^2 L^2}{l} rac{n}{r_r^2} = 0.095 \pm 0.003$

Табличное значение для $n_0 - n_e$ при используемой длине волны равно 0.087, что находится достаточно близко к полученному результату.

При постоянном напряжении полуволновое напряжение равно

$$U_{\lambda/2,DC} = 0.450 \pm 15B$$

При переменном напряжении оно оказалось равно

$$U_{\lambda/2,AC} = 0.420 \pm 15\mathrm{B}$$

Можно сделать вывод, что полуволновое напряжение понижается при повышении частоты.

6 Вывод

Таким образом, в работе было проведено исследование двулучепреломления и эффикта Поккельса в кристалле ниобата лития. Была измерена разность обыкновенного и необыкновенного показателей преломления кристалла для длины волны $\lambda = 0.63$ мкм. Она оказалась равна

$$n_o - n_e = 0.095 \pm 0.003$$

Это значение близко к табличному значению $n_o - n_e = 0.087$.

Также, подтвердилось наличие эффекта Поккельса. Было измерено полуволновое напряжение кристалла на длине волны $\lambda = 0.63$ мкм при постоянном и переменном напряжениях. При постоянном напряжении полуволновое напряжение равно

$$U_{\lambda/2,DC} = 450 \pm 15B$$

При переменном напряжении

$$U_{\lambda/2,AC} = 420 \pm 15 \text{ B}$$

Полуволновое напряжение при переменном напряжении оказалось меньше, чем при постоянном.