Изучение дифракции света

_____, ____ группа

"___" _____ 20___ г.

1 Аннотация

В работе изучается дифракция Френеля и Фраунгофера на различных припятствиях. Также проводится проверка применимости критерия Релея для оценки разрешающей способности оптических приборов.

2 Теоретические сведения и схемы экспериментальных установок

2.1 Дифракция Френеля

Дифракция Френеля наблюдается на небольшом расстоянии от препятствия, когда волновой параметр сравним с 1.

$$p = \frac{\sqrt{l\lambda}}{D} \sim 1$$

Здесь D - ширина щели, λ - длина волны, l - расстояние от щели до плоскости наблюдения.

При $p \ll 1$ дифракционная картина пропадает, а при $p \gg 1$ ширина дифракционных полос становится слишком большой, и дифракция Френеля превращается в дифракцию Фраунгофера.

Характер дифракции описывается векторной диаграммой, называемой спиралью Корню(рис. 1).

Рис. 1: Спираль Корню

Интенсивность света в точке наблюдения пропорциональна квадрату вектора амплитуды на векторной диаграмме. Из этого, например, понятно, что для достаточно широкой щели интенсивность на грнице щели в четыре раза меньше, чем в центре. Части спирали между минимумами и максимумами интенсивности называются зонами Шустера. Внешний край *m*-й зоны Шустера отстоит от середины щели на

$$\xi_m = \sqrt{m\lambda l}$$

Установка, используемая для наблюдения дифракции Френеля, изображена на рис. 2.

Рис. 2: Схема установки для изучения дифракции Френеля на щели

2.2 Дифракция Фраунгофера на щели

Дифракция Фраунгофера наблюдается, когда волновой параметр много больше 1.

$$p = \frac{\sqrt{l\lambda}}{D} \gg 1$$

Для наблюдения дифракции Фраунгофера на щели используется установка, изображенная на рисунке 3.

Рис. 3: Схема установки для изучения дифракции Фраунгофера на щели

Зависимость интенсивности излучения от угла наблюдения θ описывается формулой

$$I_1(\theta) \propto \left(\frac{\sin(\frac{kD}{2}\sin(\theta))}{\frac{kD}{2}\sin(\theta)}\right)^2$$

График этой зависимости изображен на рисунке 4.

Так как объектив O_2 не вносит разности хода между лучами от разных частей отверстия, картина в его фокальной плоскости соответствует бесконечной плоскости наблюдения.

Рис. 4: Зависимость интенсивности от угла при дифракции Фраунгофера на щели

Расстояние от оптической оси до т-й темной полосы равно

$$x_m = \frac{m\lambda f_2}{D}$$

2.3 Дифракция Фраунгофера на двух щелях

Дифракцию Фраунгофера на двух щелях будем исследовать при помощи следующей установки:

Рис. 5: Схема установки для изучения дифракции Фраунгофера на двух щелях

Пусть D - ширина щели, d - расстояние между двумя щелями.

При дифракции Фраунгофера на двух щелях картина складывается из дифракции на щели и интерференции от двух щелей. Поэтому зависимость интенсивности от угла описывается формулой

$$I_2(\theta) \propto \left(\frac{\sin(\frac{kD}{2}\sin(\theta))}{\frac{kD}{2}\sin(\theta)}\right)^2 \cdot (1 + \cos(kd\sin\theta))^2$$

График этой зависимости изображен на рисунке 6. Пунктирной линией обведена огибающая I_1 , пропорциональная интенсивности при дифракции на одной щели.

Расстояние между соседними минимумами равно

$$\delta x = \frac{f_2 \lambda}{d}$$

В области центрального максимума огибающей укладывается $\frac{2d}{D}$ интерференционных полос.

Рис. 6: Зависимость интенсивности от угла при дифракции Фраунгофера на двух щелях

2.4 Влияние дифракции на разрешающую способность оптического инструмента

Влияние дифракции на разрешающую способность оптического инструмента изучается при помощи установки, изображенной на рисунке 7.

Рис. 7: Установка для исследования влияния дифракции на разрешающую способность

В отсутствие щели S2 в плоскости П наблюдалось бы изображение двух щелей в экране Э. Они вместе с линзой O1 являются моделью далекого предмета. Щель S2 позволяет изменять размер объектива и, следовательно, разрешающую способность оптической системы.

Расстояние между изображениями щелей в плоскости П равно

$$l = d\frac{f_2}{f_1}$$

Ширина каждого изображения определяется дифракцией на объективе:

$$\delta x = \frac{\lambda}{D_0} f_2$$

Изображения двух щелей можно считать различимыми по критерию Рэлея, когда максимум одного пятна совпадает с минимумом другого, т. е. $\delta x \sim l$, или $\frac{\lambda}{D_0} \sim \frac{d}{f_1}$.

3 Результаты измерений и их обработки

3.1 Параметры установки

Параметры установки следующие: фокусные расстояния лин
з $f_1 = 10.8 \pm 0.1$ см и $f_2 = 11.0 \pm 0.1$ см.

Длина волны зеленой линии ртути $\lambda = 546.1$ нм.

3.2 Дифракция Френеля

Получим изображение щели в микроскопе. Предметная плоскость так будет совпадать с плоскостью щели. Позиция микроскопа $x_0 = 54.8$ см. Отодвигая микроскоп, будем наблюдать дифракцию Френеля в зависимости от расстояния l от щели до предметной плоскости. Измерим позиции микроскопа x_n , при которых видно n полос. Результаты измерений представлены в таблице.

n	x_n , см	<i>l</i> , см	D, MM
1	57.6	2.8	0.350
2	56.9	2.1	0.371
3	56.4	1.6	0.374
4	56.1	1.3	0.377
5	55.9	1.1	0.380

Таблица 1: Результаты измерений $x_n(n)$ и их обработки

Если на полуширине шели укладывается m зон Шустера, то на изображении щели видно n = m - 1 темную полосу. Поэтому ширина щели рассчитывается по формуле

$$D = 2\sqrt{l(n+1)\lambda}$$

Результаты рассчетов также приведены в таблице. После усреднения и учета коэффициента Стьюдента получим ширину щели, равную

$$D = 0.37 \pm 0.03$$
 MM

При измерении ширины шели микроскопом получился результат

$$D_1 = 0.36 \pm 0.02$$
 MM

При измерении по микрометру

$$D_2 = 0.40 \pm 0.02$$
 мм

Значения ширины, измеренные разными способами, близки друг к другу.

При уменьшении ширины щели волновой параметр увеличивается, и дифракционная картина меняется так же, как и при увеличении растояния до нее. Число полос, наблюдаемых на изображении щели, уменьшается.

При дифракции Френеля на проволоке на области тени наблюдаются осцилляции интенсивности. При этом, при любом *l* в центре тени от проволоки наблюдается яркая полоса.

При дифракции Френеля на краю экрана начало вектора амплитуды на векторной диаграмме зафиксировано в S_1 , а конец перемещается вдоль спирали к другому ее фокусу S_2 . При перемещении из темной зоны интенсивность постепенно нарастает, достигает $I_0/4$ при достижении края(конец в этот момент проходит начало координат), а дальше начинает совершать затухающие колебания около точки I_0 .

3.3 Дифракция Фраунгофера на щели

Соберем установку, изображенную на рисунке 3.

В микроскоп наблюдается серия светлых и темных полос. Толщина центрального максимума в два раза больше толщины боковых максимумов. Интенсивность быстро падает при отдалении от центрального максимума.

Измерим с помощью шкалы микроскопа координаты X_m видимых минимумов. Результаты измерения приведены в таблице.

m	X_m , MM
-4	0.34
-3	1.00
-2	1.72
-1	2.40
1	4.00
2	4.70
3	5.40
4	6.10

Таблица 2: Результаты измерений X_m для дифракции Фраунгофера на щели

Из МНК находим(коэффициент Стьюдента 2.37)

$$\frac{f\lambda}{D} = \frac{\Delta X_m}{\Delta m} = 0.73 \pm 0.02$$

$$D = 0.082 \pm 0.002$$
 мм

При измерении по микрометрическому винту и микроскопу полуились результаты $D_1 = 0.06 \pm 0.02$ мм и $D_2 = 0.07 \pm 0.02$ мм. Все три значения сходятся в пределах по-грешности.

При смещении щели дифракционная картина не меняется. Это объясняется тем, что мы наблюдаем картину в фокальной плоскости линзы. Эффективное расстояние до щели очень велико, и ее смещение много меньше этого расстояния. Поэтому роль играет только угловое распределение интенсивности.

При уменьшении ширины щели картина растягивается, что соответствует теории.

3.4 Дифракция Фраунгофера на двух щелях

Соберем установку с двумя щелями(рис. 5).

В области центрального максимума видно $N = \frac{2d}{D} = 7$ дифракционных полос.

Ширина центрального максимума равна $2X = 0.46 \pm 0.02$ мм.

Отсюда найдем размер щели D и расстояние между щелями d.

$$D = \frac{f_2 \lambda}{X} = 0.261 \pm 0.011$$
 мм $d = \frac{DN}{2} = 0.91 \pm 0.06$ мм

Микроскопом были измерены значения $D = 0.32 \pm 0.02$ мм, $d = 0.90 \pm 0.02$ мм. Эти значения близки к полученным по дифракционной картине.

Измерим значение ширины входной щели, при которой дифракционная картина пропадает из-за потери пространственной когерентности. Измерим также ширину щели, при которой картина наиболее контрастна. Соответствующие значения получились равными

$$D_{\text{проп.}} = 0.35 \pm 0.02 \text{ мм}$$

$$D_{\rm Kohtd.} = 0.25 \pm 0.02$$
 MM

3.5 Влияние дифракции на разрешающую способность оптического инструмента

Соберем и настроим установку, изображенную на рисунке 7. При уменьшении ширины щели S₂ качество изображения щелей ухудшается. Измерим ширину, при которой изображения двух щелей перестанут быть различимыми. Эта ширина равна

$$D_0 = 0.09 \pm 0.02$$
 MM

Рассчитанное по критерию Рэлея значение этой ширины равно

$$D_0 = rac{\lambda f_1}{d} = 0.067 \pm 0.002$$
 мм

Наблюдаемое значение ширины, при которой изображения щелей перестали быть различимы, оказалось довольно близко к вычисленному, из чего можно сделать вывод о применимости критерия Релея.

4 Вывод

Таким образом, мы исследовали дифракцию Френеля на щели, проволоке и краю экрана, дифракцию Фраунгофера на одной и двух щелях. Найденные по дифракционным картинам геометрические размеры щелей в пределах погрешности совпали с измерениями, проведенными микроскопом и по микрометрическому винту. Также была проверена применимость критерия Рэлея для оценки разрешающей способности оптических приборов.