Эффект Холла в полупроводниках

1 Аннотация

В работе исследуется полупроводниковый эффект Холла в образце германия. Для различных значений магнитного поля в образце и тока через образец измеряются ЭДС Холла. Также проводится измерение постоянной Холла и проводимости образца, из чего вычисляется подвижность носителей заряда и их концентрация.

2 Теоретические сведения

2.1 Эффект Холла в проводниках

Движение электронов в некоторой кристаллической решетке под действием внешнего электрического поля можно описать следующей формулой:

$$\langle \vec{v} \rangle = -b\vec{E}$$

Здесь $\langle \vec{v} \rangle$ - некоторая средняя скорость электронов, а b - величина, называемая подвижностью электронов.

Плотность тока равна

$$j = en\langle v \rangle = enbE$$

Отсюда получается выражение для проводимости:

$$\sigma = enb$$

Если в проводнике присутствует внешнее магнитное поле \vec{B} , то на электроны действует сила Лоренца, равная

$$\vec{F}_{\Pi} = -e(\vec{E} + \langle \vec{v} \rangle \times \vec{B})$$

Рассмотрим проводник с током в форме прямоугольного параллелепипеда со сторонами L, а и l, параллельными осям x, у и Z соответственно, в котором течет ток I вдоль оси $x.(C_M. pucyhok)$

Пусть поле \vec{E} направлено против оси x, поле \vec{B} - вдоль оси y. Тогда дрейфовая скорость электронов будет направлена вдоль оси x и равна

$$\langle v \rangle = bE$$

Часть силы Лоренца, зависящая от магнитного поля, направлена вдоль оси z и равна

$$F_B = ebEB$$

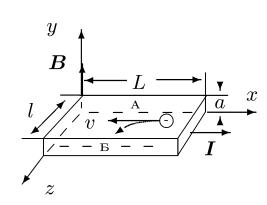


Рис. 1: Образец с током в магнитном

Эта сила заставляет электроны смещаться в направлении оси z. Из-за этого в установившемся режиме возникает противоположно направленное поле E_z , компенсирующее силу F_B .

$$E_z = bEB = \frac{bjB}{\sigma} = \frac{BI}{neal}$$

Оно создает ЭДС, равную

$$\varepsilon_H = -\frac{IB}{nea} = -R_X \cdot \frac{IB}{a}$$

Константа R_X называется постоянной Холла. Для проводника она равна

$$R_x = \frac{1}{ne}$$

2.2 Эффект Холла в полупроводниках

В полупроводниках носителями заряда служат как электроны, так и дырки. Постоянная Холла в полупроводнике равна

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2}$$

3 Экспериментальная установка

Схема используемой в работе экспериментальной установки изображена на рисунке 2. Для создания магнитногополя используется электромагнит, подключенный к источнику питания со встроенным амперметром. Для градуировки электромагнита используется милливерберметр.

Для изучения полупроводникового эффекта Холла используется образец из германия с пятью контактами. Контакты 1 и 2 подключены к цепи из блока питания, реостата и амперметра. Измеряемое вольтметром напряжение между контактами 3 и 4 равно сумме ЭДС Холла и омического напряжения из-за неточности подпайки.

Параметры установки: толщина образца равна

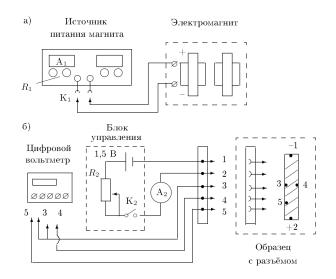


Рис. 2: Схема экспериментальной установки

$$a = 1.0 \text{ mm}$$

Рестояние между контактами 3 и 5 равно

$$L_{3,5} = 5.0 \text{ MM}$$

Ширина образца

$$l=4.0~\mathrm{mm}$$

4 Методика и результаты измерений

После подготовки приборов к работе прокалибруем электромагнит. Для этого с помощью милливерберметра снимем зависимость изменения магнитного потока Φ , при внесении пробной катушки в электромагнит, от тока I_M , протекающего через него. Для каждого значения тока рассчитаем величину индукции магнитного поля B. Величина SN для используемого милливерберметра равна

$$SN = 72 \text{ см}^2 \cdot \text{вит.}$$

Результаты измерений приведены в таблице 1.

$I_{\scriptscriptstyle \mathrm{M}}, A$	Φ_0 , мВб	Φ_1 , мВб	$B = (\Phi_1 - \Phi_0)/(SN),$ Тл
0.0	0.0	0.0	0.00
0.1	0.0	0.7	0.10
0.2	0.0	1.2	0.17
0.3	0.0	2.0	0.28
0.4	0.0	2.6	0.36
0.5	0.0	3.3	0.46
0.6	0.0	4.0	0.56
0.7	0.0	4.5	0.63
0.8	0.0	5.2	0.72
0.9	0.0	5.7	0.79
1.1	0.0	6.6	0.92
1.3	0.0	7.2	1.00
1.5	0.0	7.8	1.08

Таблица 1: Результаты измерения $B(I_M)$

$$\Delta B = 0.02 \ \mathrm{T}$$
л

Проведем несколько серий измерений зависимостей ЭДС Холла от индукции магнитного поля B. Каждую серию измерений будем проводить при постоянном значении тока I через образец. Сначала будем измерять напряжение $U_{3,4}$ при выключенном электромагните и будем считать его за нулевое. Оно вызвано несовершенством контактов 3,5, а также внешним магнитным полем. После этого проведем измерения напряжения $U_{3,4}$ при значениях тока, для которых было измерено магнитное поле магнита. Результаты измерений приведены в таблице 2. В этой таблице в одном столбце находятся результаты измерений с одинаковым B, а в одной строке - результаты измерений с одинаковым током через образен I.

Для нахождения удельной проводимости уберем образец из зазора электромагнита и подадим через него ток I=1 мА. Падение напряжения между клеммами 3 и 5 равно

$$U_{3.5} = 3.990 \pm 0.001 \text{ MB}$$

Удельная проводимость равна

$$\sigma = \frac{j}{E} = \frac{jL_{3,5}}{U_{3,5}} = \frac{IL_{3,5}}{U_{3,5}al} = (31 \pm 3) \cdot 10 \frac{1}{\text{OM} \cdot \text{M}}$$

При пропускании тока через образец вектор \vec{E} направлен противоположно векторному произведению $I \prod B$. Это свидетельствует о дырочном характере проводимости.

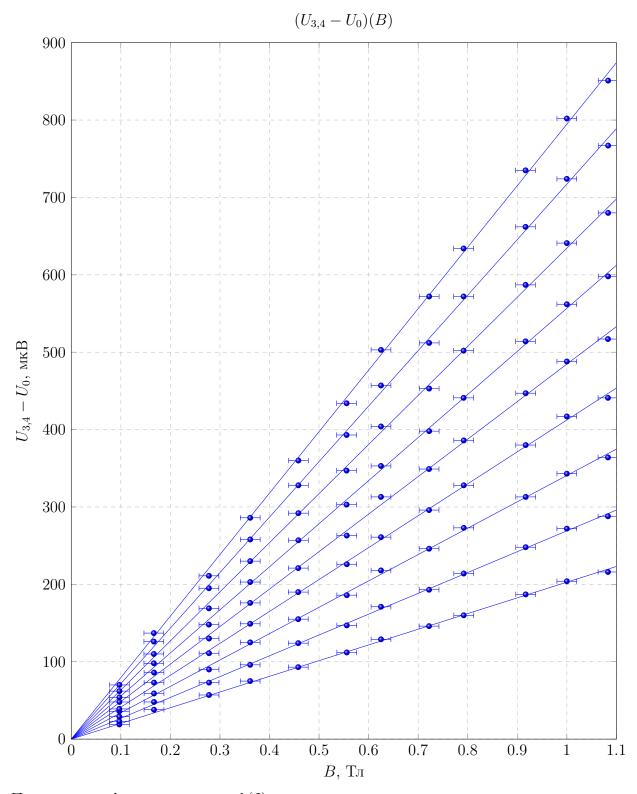
$I_{\scriptscriptstyle \mathrm{M}}, A$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.1	1.3	1.5
B, Тл	0.0	0.10	0.17	0.28	0.36	0.46	0.56	0.63	0.72	0.79	0.92	1.00	1.08
I, мА						U	$J_{3,4}, \text{ MF}$	κB					
0.25	13	32	51	70	88	106	125	142	159	173	200	217	229
0.34	22	45	70	95	118	146	169	193	215	236	270	294	310
0.43	27	56	86	117	152	182	213	245	273	300	340	370	391
0.52	32	68	105	143	181	222	258	293	328	360	412	449	473
0.61	37	76	123	167	213	258	300	350	386	423	484	525	554
0.70	42	90	140	190	245	299	345	395	440	483	556	604	640
0.80	48	102	158	217	278	340	395	452	501	550	635	689	728
0.90	53	115	179	248	311	381	446	510	565	625	715	777	820
1.00	60	130	197	271	346	420	494	563	632	694	795	862	911
-1.00	32	-40	-108	-182	-256	-330	-403	-473	-543	-604	-705	-775	-820

Таблица 2: Результаты измерения $U_{3,4}(I,I_M)$

5 Обработка результатов

Для каждой серии экспериментов пересчитаем напряжения с учетом нулевого значения. Результаты приведены в таблице 3.

$I_{\text{\tiny M}}, A$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.1	1.3	1.5
В, Тл	0.10	0.17	0.28	0.36	0.46	0.56	0.63	0.72	0.79	0.92	1.00	1.08
I, мА					U	$J_{3,4} - U_{3,4}$	J_0 , mkl	3				
0.25	19	38	57	75	93	112	129	146	160	187	204	216
0.34	23	48	73	96	124	147	171	193	214	248	272	288
0.43	29	59	90	125	155	186	218	246	273	313	343	364
0.52	36	73	111	149	190	226	261	296	328	380	417	441
0.61	39	86	130	176	221	263	313	349	386	447	488	517
0.70	48	98	148	203	257	303	353	398	441	514	562	598
0.80	54	110	169	230	292	347	404	453	502	587	641	680
0.90	62	126	195	258	328	393	457	512	572	662	724	767
1.00	70	137	211	286	360	434	503	572	634	735	802	851
-1.00	-72	-140	-214	-288	-362	-435	-505	-575	-636	-737	-807	-852


Таблица 3: Пересчитанные результаты измерения $(U_{3,4}-U_0)(I,I_M)$

По МНК рассчитаем для каждой серии коэффициент наклона и его погрешность. Результаты рассчетов приведены в таблице 4.

Построим все серии $U_{3,4}(B)$ на одном графике.

I, мА	$k = dU_{3,4}/dB$, мкВ/Тл	Δk , мк B/T л
0.25	202.8	0.9
0.34	269.1	1.0
0.43	340.7	1.5
0.52	412.4	1.5
0.61	484.6	2.4
0.70	556.7	2.1
0.80	634.5	2.5
0.90	717.2	2.8
1.00	794.7	2.9
-1.00	-797.8	3.1

Таблица 4: Угловые коэффициенты серий

Построим график зависимости k(I).

Зависимость $k=\frac{dU_{3,4}}{dB}$ от T900 800 700 600 k, mkB/Tj 500 400 300 200 100 0 6 0.1 0.20.3 0.50.40.6 0.70.80.91

Из МНК найдем угловой коэффициент наклона $k_1=dk/dI.$

$$k_1 = (0.796 \pm 0.003) \frac{B}{T_{\text{T}} \cdot A}$$

I, мА

$$U_{3,4} - U_0 = k_1 IB = R_X \cdot \frac{IB}{a}$$

Постоянная Холла равна

$$R_X = k_1 a = (0.796 \pm 0.003) \cdot 10^{-3} \text{M}^3 / \text{K}_{\text{J}}$$

Концентрация носителей заряда равна

$$n = \frac{1}{eR_r} = (7.84 \pm 0.03) \cdot 10^{21} \text{M}^{-3}$$

Подвижность носителей заряда равна

$$b = \frac{\sigma}{en} = \sigma R_X = (0.25 \pm 0.03) \frac{\text{M}^2}{\text{B} \cdot \text{c}}$$

6 Вывод

Проводимость в германии имеет дырочный характер. Полученные значения постоянной Холла и подвижности носителей заряда согласуются с табличными.